Discovering Blind Spots of Predictive Models: Representations and Policies for Guided Exploration

Himabindu Lakkaraju, Stanford University
himalv@cs.stanford.edu
Exciting Times
ML Applied to Critical Domains
Biases in ML

Google apologises for Photos app's racist blunder

7 hours ago | Technology

[Google Photos, y'all. My friend's not a gorilla.]

Mr Alcine tweeted Google about the fact its app had misclassified his photo

[Lakkaraju, Caruana, Horvitz; AAAI 2017]
Outline

- **Blind spots: Overview**
- **Problem Formulation**
- **Our Approach**
- **Experimental Results**
Focus: Detection of unknown unknowns

- **Unknown unknowns:** Instances with highly-confident but incorrect predictions

- **Blind-spots:** Feature subspaces with high concentration of unknown unknowns

- Unknown unknowns and blind spots occur due to a variety of reasons.
 - mismatch between training and execution data.
Common Assumption in ML

real-world concepts

M

cats

dogs

training data
Biases in Training Data

(real-world concepts)

$x = (f_1, ..., f_k)$

training data

wrong label
high confidence

M
Biases in Training Data

cats

dogs

M

(\textit{cat} (\textit{conf} = 0.96))
Discovery of unknown unknowns in the Wild

- **Goal**: Discover unknown unknowns
 - The predictive model is a black box
 - No access to the training data
- **Exploration space**: Execution data
- **Assumptions**
 - Unknown unknowns do not occur at random (Attenberg et. al., 2015)
 - There exist features in the data that can characterize unknown unknowns (No free lunch theorem)
Inputs

- A set of N instances $X = \{x_1, x_2, \ldots, x_N\}$ which were confidently assigned to a class of interest by the black box predictive model M and the corresponding confidence scores $S = \{s_1, s_2, \ldots, s_N\}$
- An oracle o which takes as input a datapoint x and returns its true label $o(x)$ as well as the cost incurred to determine the true label $\text{cost}(x)$
- A budget, B, on the number of times the oracle can be queried
Problem Definition

Set X of high confidence instances

$x(t) = (f_1, ..., f_k)$

Utility function: $u(x(t)) = 1_{\{o(x_t) \neq c\}} - \gamma \times \text{cost}(x(t))$

Problem statement: Find $\{x(1), x(2) \cdots x(B)\} \subseteq X$ s.t. $\sum_{t=1}^{B} u(x(t))$ is maximized.
Problem Definition

Set X of high confidence instances

\[x(t) = (f_1, ..., f_k) \]

How to search the data space?
How to guide future discoveries with oracle feedback?
How to trade-off exploration with exploitation?
How to interpret regions of unknown unknowns?
Our Framework

Input:
Execution data points with high confidence

Step 1:
Descriptive Space Partitioning

- White Dogs
- White Cats
- Brown Cats
- Brown Dogs

Step 2:
Multi-armed bandits for unknown unknowns
Descriptive Space Partitioning

- Partition the instances such that those with similar feature values and confidence scores are grouped together.

- Each group must be associated with a descriptive pattern highlighting the characteristics of the instances in the group.
Descriptive Space Partitioning

- Obtain candidate patterns using frequent itemset mining algorithms [E.g., Apriori]
- Choose a set of patterns to ‘group’ the instances in the set X such that:
 - Intra-group feature distance is minimized
 - Confidence scores of instances assigned to the same group are similar
 - Inter-group feature distances are maximized
 - Confidence scores of instances assigned to different group are dissimilar
Descriptive Space Partitioning

Intra-partition feature distance:
\[g_1(q) = \sum_{\{x \in \mathcal{X} : x \in \text{covered by}(q)\}} d(x, \bar{x}_q) \]

Inter-partition feature distance:
\[g_2(q) = \sum_{\{x \in \mathcal{X} : x \in \text{covered by}(q)\}} \sum_{q' \in Q : q' \neq q} d(x, \bar{x}_{q'}) \]

Intra-partition confidence score distance:
\[g_3(q) = \sum_{\{s_i : x_i \in \mathcal{X} \land x_i \in \text{covered by}(q)\}} d'(s_i, \bar{s}_q) \]

Inter-partition confidence score distance:
\[g_4(q) = \sum_{\{s_i : x_i \in \mathcal{X} \land x_i \in \text{covered by}(q)\}} \sum_{q' \in Q : q' \neq q} d'(s_i, \bar{s}_{q'}) \]

Pattern Length: \(g_5(q) = \text{size}(q) \)

Input: candidate pattern set \(Q = \{q_1, q_2, \ldots\}, X, S, \lambda \)

Objective: Find \(P \subseteq Q \) s.t.
\[
\min_{q \in Q} \sum_{q} f_q(\lambda_1 g_1(q) - \lambda_2 g_2(q) + \lambda_3 g_3(q) - \lambda_4 g_4(q) + \lambda_5 g_5(q))
\]
\[
\text{s.t.} \quad \sum_{q : x \in \text{covered by}(q)} f_q \geq 1 \quad \forall x \in \mathcal{X}, \text{ where } f_q \in \{0, 1\} \quad \forall q \in Q
\]

Reduction to weighted set cover \(\rightarrow \) NP-hard
\(\ln N \) approximation with greedy algorithm which picks at each step a pattern with maximum coverage-to-weight ratio
Bandits for Unknown Unknowns

- Each partition \rightarrow an arm
- Pulling an arm \rightarrow sampling a point without replacement
- Various stationary and non-stationary bandit algorithms
 - UCB1
 - Discounted UCB, Sliding window UCB
 - UUB

Partition selection at time t

$$\max_i \tilde{u}_t(i) + b_t(i)$$

(discounted) upper confidence bound

(discounted) mean reward

Step 1: space partitions
Multi-Armed Bandit Algorithms

- **UCB1:**
 - Mean reward $\bar{u}_t(i)$: Average reward obtained by pulling arm i till time t.
 - Upper confidence bound $b_t(i): \sqrt{\frac{2 \ln N_t}{N_t(i)}}$

- **Sliding window UCB (τ):**
 - Mean reward $\bar{u}_t(i)$: Average reward obtained by pulling arm i over the past τ plays.
 - Upper confidence bound $b_t(i)$: Same as UCB1 except N_t and $N_t(i)$ are computed over the past τ plays.
Multi-Armed Bandit Algorithms

- Discounted UCB (γ):
 - Mean reward $\bar{u}_t(i)$: Average discounted reward obtained by pulling arm i till time t
 - reward at time $t - j$ is weighted by γ^{t-j}
 - Upper confidence bound $b_t(i)$: Similar to UCB1 except:
 - When computing N_t and $N_t(i)$, pull at time $t - j$ is weighted by γ^{t-j}

Regret $= T \log(T)$
Multi-Armed Bandit Algorithms

■ Our algorithm – UUB:
 □ No need to set discounting factor

□ Mean reward $\bar{u}_t(i)$: Average discounted reward obtained by pulling arm i till time t
 ■ reward at time $t - j$ is weighted by $\frac{\text{No. of instances in group } i \text{ at time } t}{\text{No. of instances in group } i \text{ at time } t - j}$

□ Upper confidence bound $b_t(i)$: Similar to UCB1 except:
 ■ When computing N_t and $N_t(i)$, pull at time $t - j$ is weighted by the ratio above

Regret $= T \log(T)$
Experiments

- Sentiment Snippets
 - Bias: Missing subspaces of data
- Subjectivity dataset from Rotten Tomatoes
 - Bias: Missing subspaces of data
- Amazon Reviews
 - Bias: domain adaptation; train on electronics reviews and deploy on book reviews.
- Image Data
 - Bias: Missing subspaces of data; training data comprises of black dogs and non-black cats
Evaluation: Images Data

- Blind spots: non-black dogs, black cats
 - Blind spot: black cats
 - Blind spot: white dogs
 - Blind spot: white cats
Evaluation: Images Data

- Blind spots: non-black dogs, black cats

Blind spot: black cats

Blind spot: white dogs

Blind spot: white cats
Evaluation: Images Data

- Blind spots: non-black dogs, black cats

Blind spots: non-black dogs, black cats

Blind spot: black cats

Blind spot: white dogs

Exploration resources spent heavily on blind spots
Evaluating DSP

Lower entropy \rightarrow Better separation of unknown unknowns
Evaluating Bandits

Lower regret \rightarrow More effective discovery of unknown unknowns
Comparison with Alternative Methods

![Comparison with Alternative Methods](image-url)
From unknown unknowns to blind spots

- Interactively discovering blind spots:
 - The system designer can interactively decrease (or increase) reward for an arm

- Incentivizing diversity:
 - Reward of discovering similar unknown unknowns decreases with each additional discovery

- Our framework is *generic enough to adapt* to either of these extensions
Questions

himalv@cs.stanford.edu
Example